Twisted Second Moments and Explicit Formulae of the Riemann Zeta-Function
نویسنده
چکیده
Mathematisch-naturwissenschaftlichen Fakultät Doctor of Philosophy Twisted Second Moments and Explicit Formulae of the Riemann Zeta-Function by Nicolas Martinez Robles Verschiedene Aspekte, die analytische Zahlentheorie und die Riemann zeta-Funktion verbinden, werden erweitert. Dies beinhaltet: 1. explizite Formeln, die eine Verbindung zwischen der Möbiusfunktion und den nichttrivialen Nullstellen der zeta-Funktion herstellen; 2. verallgemeinerte Resultate über Summen von Ramanujan Summen; 3. neue Resultate über die Kombinationen von Riemann Ξ-Funktionen auf beschränkten vertikalen Verschiebungen und ihre Nullstellen auf der kritischen Geraden; 4. Verallgemeinerung der Moment Integrale der Riemann Ξ-Funktion; 5. asymptotische Näherungen der durchschnittlichen Quadrate der Produkte der Riemann ζ-Funktion und neuer Dirichlet Polynome; 6. zeta Regularisierung auf Tori und einen neuen Beweis der Chowla-Selberg Formel. Several aspects connecting analytic number theory and the Riemann zeta-function are studied and expanded. These include: 1. explicit formulae relating the Möbius function to the non-trivial zeros of the zeta function; 2. generalized results on sums of Ramanujan sums; 3. new results on the combinations of Riemann Ξ-functions on bounded vertical shifts and their zeros on the critical line; 4. a generalization of moment integrals involving the Riemann Ξ-function; 5. asymptotics for the mean square of the product of the Riemann ζ-function and new Dirichlet polynomials; 6. zeta regularization on tori and a new proof of the Chowla-Selberg formula.
منابع مشابه
A Hybrid Euler-hadamard Product for the Riemann Zeta Function
We use a smoothed version of the explicit formula to find an accurate pointwise approximation to the Riemann zeta function as a product over its nontrivial zeros multiplied by a product over the primes. We model the first product by characteristic polynomials of random matrices. This provides a statistical model of the zeta function which involves the primes in a natural way. We then employ the...
متن کاملThe Riemann Zeta Function on Vertical Arithmetic Progressions
We show that the twisted second moments of the Riemann zeta function averaged over the arithmetic progression 12 + i(an + b) with a > 0, b real, exhibits a remarkable correspondance with the analogous continuous average and derive several consequences. For example, motivated by the linear independence conjecture, we show at least one third of the elements in the arithmetic progression an + b ar...
متن کاملA more accurate half-discrete Hardy-Hilbert-type inequality with the best possible constant factor related to the extended Riemann-Zeta function
By the method of weight coefficients, techniques of real analysis and Hermite-Hadamard's inequality, a half-discrete Hardy-Hilbert-type inequality related to the kernel of the hyperbolic cosecant function with the best possible constant factor expressed in terms of the extended Riemann-zeta function is proved. The more accurate equivalent forms, the operator expressions with the norm, the rever...
متن کاملQuantum chaos, random matrix theory, and the Riemann ζ-function
Hilbert and Pólya put forward the idea that the zeros of the Riemann zeta function may have a spectral origin : the values of tn such that 1 2 + itn is a non trivial zero of ζ might be the eigenvalues of a self-adjoint operator. This would imply the Riemann Hypothesis. From the perspective of Physics one might go further and consider the possibility that the operator in question corresponds to ...
متن کاملRandom Matrix Theory Predictions for the Asymptotics of the Moments of the Riemann Zeta Function and Numerical Tests of the Predictions
In 1972, H.L. Montgomery and F. Dyson uncovered a surprising connection between the Theory of the Riemann Zeta function and Random Matrix Theory. For the next few decades, the major developments in the area were the numerical calculations of Odlyzko and conjectures for the moments of the Riemann Zeta function (and other L-functions) found by Conrey, Ghosh, Gonek, Heath-Brown, Hejhal and Sarnak....
متن کامل